Navigation
class WalkerList( list ) | Source |
---|
WalkerList is a list of Walker.
It is the working ensemble of NestedSampler.
Attributes
- logZ : float (read-only)
Natural log of evidence - info : float (read-only)
The information H. The compression factor ( the ratio of the prior space
available to the model parameters over the posterior space ) is equal to the exp( H ). - iteration : int
Present iteration number.
Author Do Kester
WalkerList( problem=None, ensemble=0, allpars=None, fitIndex=None, walker=None, walkerlist=None ) |
---|
Constructor.
To be valid it needs either problem/allpars/fitindex or walker or walkerlist
Parameters
- problem : Problem or None
to construct a walker to be added. - ensemble : int
number of walkers - allpars : array_like
parameters of the problem - fitIndex : array of int
list of parameters to be fitted. - walker : Walker or None
walker to be added. - walkerlist : Walkerlist or None
walkerlist to be incorporated.
addWalkers( walker, ensemble ) |
---|
setWalker( walker, index ) |
---|
Parameters
- walker : Walker
the list to take to copy from - index : int
the index at which to set
copy( src, des, wlist=None, start=0 ) |
---|
Parameters
- src : int
the source item - des : int
the destination item - wlist : WalkerList or None
Copy from this WalkerList (None == self) - start : int
iteration where this walker was created
logPlus( x, y ) |
---|
firstIndex( lowL ) |
---|
None if list is empty
len if no item applies
Parameters
- lowL : float
low Likelihood
insertWalker( walker ) |
---|
Parameters
- walker : Walker
the list to take to copy from
cropOnLow( lowL ) |
---|
Precondition: self is ordered on logL
Parameters
- lowL : float
low Likelihood
getLogL( walker=None ) |
---|
Parameters
- walker : None or Walker
None return value for all walkers
get the logL from
allPars( ) |
---|
In case of dynamic models the number of parameters may vary.
They are zero-padded. Use getNumberOfParametersEvolution
to get the actual number.
Parameters
- kpar : int or tuple of ints
the parameter to be selected. Default: all
getParameterEvolution( kpar=None ) |
---|
In case of dynamic models the number of parameters may vary.
They are zero-padded. Use getNumberOfParametersEvolution
to get the actual number.
Parameters
- kpar : int or tuple of ints
the parameter to be selected. Default: all
getScaleEvolution( ) |
---|
Return the evolution of the scale.
getLogLikelihoodEvolution( ) |
---|
Return the evolution of the log( Likelihood ).
getLowLogL( ) |
---|