Navigation
| class WalkerList( list ) | Source |
|---|
WalkerList is a list of Walker.
It is the working ensemble of NestedSampler.
Attributes
- logZ : float (read-only)
Natural log of evidence - info : float (read-only)
The information H. The compression factor ( the ratio of the prior space
available to the model parameters over the posterior space ) is equal to the exp( H ). - iteration : int
Present iteration number.
Author Do Kester
| WalkerList( problem=None, ensemble=0, allpars=None, fitIndex=None, walker=None, walkerlist=None ) |
|---|
Constructor.
To be valid it needs either problem/allpars/fitindex or walker or walkerlist
Parameters
- problem : Problem or None
to construct a walker to be added. - ensemble : int
number of walkers - allpars : array_like
parameters of the problem - fitIndex : array of int
list of parameters to be fitted. - walker : Walker or None
walker to be added. - walkerlist : Walkerlist or None
walkerlist to be incorporated.
| addWalkers( walker, ensemble ) |
|---|
| setWalker( walker, index ) |
|---|
Parameters
- walker : Walker
the list to take to copy from - index : int
the index at which to set
| copy( src, des, wlist=None, start=0 ) |
|---|
Parameters
- src : int
the source item - des : int
the destination item - wlist : WalkerList or None
Copy from this WalkerList (None == self) - start : int
iteration where this walker was created
| logPlus( x, y ) |
|---|
| firstIndex( lowL ) |
|---|
None if list is empty
len if no item applies
Parameters
- lowL : float
low Likelihood
| insertWalker( walker ) |
|---|
Parameters
- walker : Walker
the list to take to copy from
| cropOnLow( lowL ) |
|---|
Precondition: self is ordered on logL
Parameters
- lowL : float
low Likelihood
| getLogL( walker=None ) |
|---|
Parameters
- walker : None or Walker
None return value for all walkers
get the logL from
| allPars( ) |
|---|
In case of dynamic models the number of parameters may vary.
They are zero-padded. Use getNumberOfParametersEvolution
to get the actual number.
Parameters
- kpar : int or tuple of ints
the parameter to be selected. Default: all
| getParameterEvolution( kpar=None ) |
|---|
In case of dynamic models the number of parameters may vary.
They are zero-padded. Use getNumberOfParametersEvolution
to get the actual number.
Parameters
- kpar : int or tuple of ints
the parameter to be selected. Default: all
| getScaleEvolution( ) |
|---|
Return the evolution of the scale.
| getLogLikelihoodEvolution( ) |
|---|
Return the evolution of the log( Likelihood ).
| getLowLogL( ) |
|---|