BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class Walker( object )Source

Walker is member of the cloud of points used in NestedSampler.

Attributes

  • id : int
         identification number
  • parent : int
         id of the parent (-1 for Adam/Eve)
  • start : int
         iteration in which the walker is constructed
  • step : int
         number of randomization steps since copy
  • problem : Problem
         the problem being addressed
  • logL : float
         log Likelihood = log Prob( data | params )
  • logPrior : float
         log Prior for the model
  • allpars : array_like
         list of parameters and hyperparameters
  • fitIndex : array_like
         list of (super)parameters to be fitted.
  • parameters : array_like (read only)
         parameters (of the model)
  • hypars : array_like (read only)
         list of hyper parameters (of the error distribution)

Author Do Kester

Walker( wid, problem, allpars, fitIndex, logL=0, parent=-1, start=0, copy=None )

Constructor.

Either errdis or copy is obligatory.

Parameters

  • wid : int
         id of the walker
  • problem : Problem
         the problem being used. Parameters are copied from its model.
  • allpars : array_like
         array of parameters and hyperparameters
  • fitIndex : None or array_like
         indices of allpars to be fitted
         None is all
  • logL : float
         log Likelihood
  • parent : int
         id of the parent (-1 for Adam/Eve)
  • start : int
         iteration in which the walker is constructed
  • copy : Walker
         the walker to be copied

copy( )
Copy.

toSample( logW )
Return the contents of the Walker as a Sample.

check( nhyp=0, nuisance=0 )
Perform some sanity checks.