Navigation
class Walker( object ) | Source |
---|
Walker is member of the cloud of points used in NestedSampler.
Attributes
- id : int
identification number - parent : int
id of the parent (-1 for Adam/Eve) - start : int
iteration in which the walker is constructed - step : int
number of randomization steps since copy - problem : Problem
the problem being addressed - logL : float
log Likelihood = log Prob( data | params ) - logPrior : float
log Prior for the model - allpars : array_like
list of parameters and hyperparameters - fitIndex : array_like
list of (super)parameters to be fitted. - parameters : array_like (read only)
parameters (of the model) - hypars : array_like (read only)
list of hyper parameters (of the error distribution)
Author Do Kester
Walker( wid, problem, allpars, fitIndex, logL=0, parent=-1, start=0, copy=None ) |
---|
Constructor.
Either errdis or copy is obligatory.
Parameters
- wid : int
id of the walker - problem : Problem
the problem being used. Parameters are copied from its model. - allpars : array_like
array of parameters and hyperparameters - fitIndex : None or array_like
indices of allpars to be fitted
None is all - logL : float
log Likelihood - parent : int
id of the parent (-1 for Adam/Eve) - start : int
iteration in which the walker is constructed - copy : Walker
the walker to be copied
copy( ) |
---|
toSample( logW ) |
---|
check( nhyp=0, nuisance=0 ) |
---|