Navigation
class SoftMaxModel( NonLinearModel ) | Source |
---|
Softmax Model is a Logistic model if the number of outputs is 1. Otherwise it is generalization of the LogisticModel over multiple outputs
exp( sum_k( x_k * p_kn ) + q_n ) )
f_n( x:p ) = -------------------------------------------
sum_i( exp( sum_k( x_k * p_ki ) + q_i ) ) )
0 0 0 0 0 0 I inputs
|\ /|\ /|\ /|\ /|\ /|
all inputs connect to all outputs I*N connecting parameters
\|/ \|/ \|/ \|/ \|/ N offset parameters (if offset)
0 0 0 0 0 N outputs
The parameters (p) are initialized at 1.0, except the offset (q). They are initialized at 0.0.
Attributes
- offset : bool
True : the outputs have offsets - ndout : int
number of output categories - in2out : int
ndim * ndout - normed : bool
the results are normalized (def:True)
Attributes from Model
npchain, parameters, stdevs, xUnit, yUnit
Attributes from FixedModel
npmax, fixed, parlist, mlist
Attributes from BaseModel
npbase, ndim, priors, posIndex, nonZero, tiny, deltaP, parNames
SoftMaxModel( ndim=1, ndout=1, copy=None, offset=False, normed=True, **kwargs ) |
---|
Logistic response model.
Number of parameters is npars (see offset)
Parameters
- ndim : int
number of inputs - ndout : int
number of classifications - offset : bool
False : no offsets npars = ndim * ndout
True : each output has one offset: npars = ndim * ndout + ndout - normed : bool
True : output is normalized
False : not - copy : SoftMaxModel
to be copied
copy( ) |
---|
baseResult( xdata, params ) |
---|
Parameters
- xdata : array_like
values at which to calculate the result - params : array_like
values for the parameters.
basePartial( xdata, params, parlist=None ) |
---|
Parameters
- xdata : array_like
values at which to calculate the partials - params : array_like
values for the parameters. - parlist : array_like
list of indices active parameters (or None for all)
baseDerivative( xdata, params ) |
---|
Parameters
- xdata : array_like
values at which to calculate the result - params : array_like
values for the parameters.
baseName( ) |
---|
baseParameterUnit( k ) |
---|
Parameters
- k : int
parameter number.
Methods inherited from NonLinearModel |
---|
Methods inherited from Model |
---|
- chainLength( )
- isNullModel( )
- isolateModel( k )
- addModel( model )
- subtractModel( model )
- multiplyModel( model )
- divideModel( model )
- pipeModel( model )
- appendModel( model, operation )
- correctParameters( params )
- result( xdata, param=None )
- operate( res, pars, next )
- derivative( xdata, param, useNum=False )
- selectPipe( ndim, ninter, ndout )
- pipe_0( dGd, dHdG )
- pipe_1( dGd, dHdG )
- pipe_2( dGd, dHdG )
- pipe_3( dGd, dHdG )
- pipe_4( dGdx, dHdG )
- pipe_5( dGdx, dHdG )
- pipe_6( dGdx, dHdG )
- pipe_7( dGdx, dHdG )
- pipe_8( dGdx, dHdG )
- pipe_9( dGdx, dHdG )
- shortName( )
- getNumberOfParameters( )
- numDerivative( xdata, param )
- numPartial( xdata, param )
- isDynamic( )
- hasPriors( isBound=True )
- getPrior( kpar )
- setPrior( kpar, prior=None, **kwargs )
- getParameterName( kpar )
- getParameterUnit( kpar )
- getIntegralUnit( )
- setLimits( lowLimits=None, highLimits=None )
- getLimits( )
- hasLimits( fitindex=None )
- unit2Domain( uvalue, kpar=None )
- domain2Unit( dvalue, kpar=None )
- partialDomain2Unit( dvalue )
- nextPrior( )
- getLinearIndex( )
- testPartial( xdata, params, silent=True )
- strictNumericPartial( xdata, params, parlist=None )
- assignDF1( partial, i, dpi )
- assignDF2( partial, i, dpi )
- strictNumericDerivative( xdata, param )
Methods inherited from FixedModel |
---|
Methods inherited from BaseModel |
---|