BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class SineModel( NonLinearModel )Source

Sinusoidal Model.

Two variants are implemented.

  1. By default it is the weighted sum of sine and cosine of the same frequency

     f( x:p ) = p1 * cos( 2 * π * p0 * x ) + p2 * sin( 2 * π * p0 * x )

where
     p0 = frequency
     p1 = amplitude cosine and
     p2 = amplitude sine. As always x = input.

The parameters are initialized at [1.0, 1.0, 1.0]. It is a non-linear model.

  1. If phase == True, the sinusoidal model has an explicit phase

     f( x:p ) = p0 * sin( 2 * π * p1 * x + p2 )

where
     p0 = amplitude
     p1 = frequency
     p2 = phase.

The parameters are initialized as [1.0, 1.0, 0.0].

Examples

sine = SineModel( )
print( sine.npchain )

3 pars = [0.1, 0.0, 1.0] sine.parameters = pars print( sine( numpy.arange( 11, dtype=float ) ) ) # One sine period pars = [0.1, 1.0, 0.0] sine.parameters = pars print( sine( numpy.arange( 11, dtype=float ) ) ) # One cosine period

Attributes

  • phase : bool (False)
         False : original 2 amplitudes model
         True : phase model

Attributes from Model

     npchain, parameters, stdevs, xUnit, yUnit

Attributes from FixedModel

     npmax, fixed, parlist, mlist

Attributes from BaseModel

     npbase, ndim, priors, posIndex, nonZero, tiny, deltaP, parNames

SineModel( copy=None, phase=False, **kwargs )

Sinusiodal model.

Number of parameters is 3.

Parameters

  • phase : bool
         if True, construct phase variant.
  • copy : SineModel
         model to copy
  • fixed : dictionary of {int:float}
         int list if parameters to fix permanently. Default None.
         float list of values for the fixed parameters.
         Attribute fixed can only be set in the constructor.

copy( )

Copy method.

baseResult( xdata, params )
Returns the result of the model function.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

basePartial( xdata, params, parlist=None )
Returns the partials at the input value.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.
  • parlist : array_like
         list of indices active parameters (or None for all)

baseDerivative( xdata, params )
Returns the derivative of f to x (df/dx) at the input values.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

baseName( )
Returns a string representation of the model.

baseParameterUnit( k )
Return the unit of a parameter.

Parameters

  • k : int
         the kth parameter.

phaseResult( xdata, params )
Returns the result of the model function.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

phasePartial( xdata, params, parlist=None )
Returns the partials at the input value.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.
  • parlist : array_like
         list of indices active parameters (or None for all)

phaseDerivative( xdata, params )
Returns the derivative of f to x (df/dx) at the input values.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

phaseName( )
Returns a string representation of the model.

phaseParameterUnit( k )
Return the unit of a parameter.

Parameters

  • k : int
         the kth parameter.
Methods inherited from NonLinearModel
Methods inherited from Model
Methods inherited from FixedModel
Methods inherited from BaseModel