BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class ScaledErrorDistribution( ErrorDistribution )Source

Base class that defines methods common to error distributions with a scale.

  GaussErrorDistribution
  LaplaceErrorDistribution
  CauchyErrorDistribution
  ExponentialErrorDistribution
  UniformErrorDistribution

Author Do Kester.

ScaledErrorDistribution( scale=1.0, limits=None, fixed=None, copy=None )

Default Constructor.

Parameters

  • scale : float
         noise scale

  • limits : None or list of 2 floats [low,high]
         None : no limits implying fixed scale
         low low limit on scale (needs to be >0)
         high high limit on scale
         when limits are set, the scale is to be fitted

  • fixed : dictionary of {int:float}
         int list if parameters to fix permanently. Default None.
         float list of values for the fixed parameters.

  • copy : ScaledErrorDistribution
         distribution to be copied.

copy( )

Return copy of this.

setLimits( limits )
Set limits for scale.

Parameters

  • limits : [low,high]
         low : float or array_like
             low limits
         high : float or array_like
             high limits
Methods inherited from ErrorDistribution