Navigation
class Sample( object ) | Source |
---|
Sample is weighted random draw from a Posterior distribution as provided by a Sampler
Each Sample maintains 5 attributes
Attributes
- id : int
identification number - parent : int
id of the parent (-1 for Adam/Eve) - model : Model
the model being used - logL : float
log Likelihood = log Prob( data | params ) - logW : float
log Weights of the log of the weight of the sample.
The weight is the relative contribution to the evidence integral.
logW = logL + log( width )
The logZ, the evidence, equals the log of the sum of the contributions.
logZ = log( sum( exp( logW ) ) ) - parameters : array_like
parameters (of the model) - nuisance : array_like (optional)
nuisance parameters (of the problem) - hyper : array_like (optional)
list of hyper parameters (of the error distribution) - fitIndex : array_like or None
list of allpars to be fitted. - allpars : array_like (read only)
list of parameters, nuisance parameters and hyperparameters
Author Do Kester
Sample( id, parent, start, model, parameters=None, fitIndex=None, copy=None ) |
---|
Constructor.
Parameters
- id : int
id of the sample - parent : int
id of the parent (-1 for Adam/Eve) - start : int
iteration in which the walker was constructed - model : Model
the model being used. Parameters are copied from this model. - parameters : array_like
list of model parameters - fitIndex : array_like
list of indices in allpars that need fitting - copy : Sample
the sample to be copied
copy( ) |
---|