BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class ProductModel( NonLinearModel )Source

Direct product of 2 (or more) models.

The dimensionality of this model is equal to the number of constituent models.

The number of parameters is the sum of the parameters of the models.

Examples

nxk = 17
nyk = 11
xknots = numpy.arange(  nxk , dtype=float ) * 10      # make knots from 0 to 160
yknots = numpy.arange(  nyk , dtype=float ) * 10      # make knots from 0 to 100
smx = SplinesModel( xknots )
smy = SplinesModel( yknots )
csm = ProductModel( [smx,smy] )
print csm.getNumberOfParameters( )      # ( nxk + order - 1 ) + ( nyk + order - 1 )
32
# ... fitter etc. see Fitter

Category mathematics/Fitting

Attributes

  • models : list of Model
         models to be multiplied, one for each dimension.

Attributes from Model

     npchain, parameters, stdevs, xUnit, yUnit

Attributes from FixedModel

     npmax, fixed, parlist, mlist

Attributes from BaseModel

     npbase, ndim, priors, posIndex, nonZero, tiny, deltaP, parNames

ProductModel( models, copy=None, fixed=None, **kwargs )

Direct product of 2 (or more) models. It has dimensionality equal to the number of constituent models.

The models are given as input, the consecutive colums in xdata.

The number of parameters is the sum of the parameters of the constituent models

Parameters

  • models : list of Model
         the constituent models
  • copy : ProductModel
         model to be copied
  • fixed : dict
         If not None raise AttributeError.

Raises

ValueError
     When one of the models is 2 (ore more) dimensional

  • AttributeErrr : When fixed is not None

copy( )

Copy method.

baseResult( xdata, params )
Returns the partials at the input value.

The partials are the powers of x (input) from 0 to degree.

Parameters

  • xdata : array_like
         value at which to calculate the partials
  • params : array_like
         parameters to the model.

basePartial( xdata, params, parlist=None )
Returns the partials at the input value.

The partials are the powers of x (input) from 0 to degree.

Parameters

  • xdata : array_like
         value at which to calculate the partials
  • params : array_like
         parameters to the model.
  • parlist : array_like
         not used in this model

baseName( )
Returns a string representation of the model.

baseParameterName( k )
Return the name of a parameter as "param. Parameters
  • k : int
         the kth parameter.

baseParameterUnit( k )
Return the unit of a parameter. Parameters
  • k : int
         the kth parameter.
Methods inherited from NonLinearModel
Methods inherited from Model
Methods inherited from FixedModel
Methods inherited from BaseModel