BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class PowerLawModel( NonLinearModel )Source

General powerlaw model of arbitrary degree.

     f( x:p ) = p0 * ( x - p1 )p2

with
     p0 = amplitide
     p1 = x-shift
     p2 = power

The parameters are initialized at [1.0, 0.0, 1.0].

Note that the term ( x - p1 ) needs to be divided by a factor 1.0 in the same units as the x, to get the overall units of f( x:p ) right. The factor is omitted as it does not contribute in the calculations.

Examples

pl = PowerLawModel( )
print( pl.npchain )
4

Attributes

     no attributes of its own.

Attributes from Model

     npchain, parameters, stdevs, xUnit, yUnit

Attributes from FixedModel

     npmax, fixed, parlist, mlist

Attributes from BaseModel

     npbase, ndim, priors, posIndex, nonZero, tiny, deltaP, parNames

PowerLawModel( copy=None, **kwargs )

Powerlaw of an unknown degree.

The number of parameters is 3

Parameters

  • copy : PowerLawModel
         to be copied
  • fixed : None or dictionary of {int:float|Model}
         int index of parameter to fix permanently.
         float|Model values for the fixed parameters.
         Attribute fixed can only be set in the constructor.
         See: FixedModel

copy( )

Copy method.

baseResult( xdata, params )
Returns the result of the model function.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

basePartial( xdata, params, parlist=None )
Returns the partials at the input (xdata) value.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.
  • parlist : array_like
         list of indices active parameters (or None for all)

baseDerivative( xdata, params )
Returns the derivative (df/dx) at the input (xdata) value.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

baseName( )
Returns a string representation of the model.

baseParameterUnit( k )
Return the unit of the indicated parameter. Parameters
  • k : int
         parameter number.
Methods inherited from NonLinearModel
Methods inherited from Model
Methods inherited from FixedModel
Methods inherited from BaseModel