BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class NoiseScale( HyperParameter )Source

Hyperparameter for the scale of a ScaledErrorDistribution

it is a measure of the noise.

Information about the scale of the noise is stored in his class. It is either in the form of a fixed number, when the noise scale is known or in the form of a Prior with limits. By default this prior is a JeffreysPrior..

The full use of priors is reserved for Bayesian calculations as in NestedSampler

Attributes

  • scale : float
         the value of the noiseScale. Default: 1.0
  • stdev : float
         the standard deviation of the noise scale. Default: None
  • prior : Prior
         the prior for the noiseScale. Default: JeffreysPrior
  • fixed : boolean
         keep the noise scale fixed at the value given by scale.
         default: True
  • minimum : boolean
         automatic noise scaling with a minimum. default: False

NoiseScale( scale=1.0, isFixed=True, prior=None, limits=None, copy=None )

Constructor.

Parameters

  • scale : float
         float value of the noise scale
  • isFixed : bool
         True: Consider the hyperparameter as fixed
         False: Optimize the parameter too (when relevant)
                 It might need a prior and/or limits to be set
                 The default prior is JeffreysPrior
  • prior : None or Prior
         None : no prior set
         Prior : the prior probability on scale
  • limits : None or list of 2 floats
         None : no limits set
         [lo,hi] : limits to be passed to the Prior.
         If limits are set, the default for Prior is JeffreysPrior
  • copy : NoiseScale
         NoiseScale to copy

copy( )

Return a copy.

minimumScale( scale=None )
Fit the noise scale with a minimum value.

Parameters

  • scale : float
         the value of the noise scale. Default: noiseScale.scale
Methods inherited from HyperParameter