BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class LogisticModel( NonLinearModel )Source

Logistic Model.

  f( x:p ) = p0 / ( 1 + exp( ( x - p1 ) / p2 ) )

where
  p0 : amplitude
  p1 : center
  p2 : slope

The parameters are initialized at 1.0, 0.0, 1.0.

Examples

lm = LogisticModel( )
print( lm )
Logistic: f( x:p ) = p_0 / ( 1 + exp( ( p_1 - x ) / p_2 ) )
print( lm.npars )
3
print( lm( numpy.arange( 11 ) - 5 ) )
[  3.72665317e-06   3.35462628e-04   1.11089965e-02   1.35335283e-01
   6.06530660e-01   1.00000000e+00   6.06530660e-01   1.35335283e-01
   1.11089965e-02   3.35462628e-04   3.72665317e-06]

Attributes from Model

     npchain, parameters, stdevs, xUnit, yUnit

Attributes from FixedModel

     npmax, fixed, parlist, mlist

Attributes from BaseModel

     npbase, ndim, priors, posIndex, nonZero, tiny, deltaP, parNames

LogisticModel( copy=None, **kwargs )

Logistic response model.

Number of parameters is 3.

Parameters

  • copy : LogisticModel
         to be copied
  • fixed : None or dictionary of {int:float|Model}
         int index of parameter to fix permanently.
         float|Model values for the fixed parameters.
         Attribute fixed can only be set in the constructor.
         See: FixedModel

copy( )

Copy method.

baseResult( xdata, params )
Returns the result of the model function.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

basePartial( xdata, params, parlist=None )
Returns the partials at the input value.

Parameters

  • xdata : array_like
         values at which to calculate the partials
  • params : array_like
         values for the parameters.
  • parlist : array_like
         list of indices active parameters (or None for all)

baseDerivative( xdata, params )
Return the derivative df/dx at each xdata (=x).

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

baseName( )
Returns a string representation of the model.

baseParameterUnit( k )
Return the unit of the indicated parameter.

Parameters

  • k : int
         parameter number.
Methods inherited from NonLinearModel
Methods inherited from Model
Methods inherited from FixedModel
Methods inherited from BaseModel