BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class GibbsEngine( Engine )Source

Move a one parameter at a time by a random amount.

The walker is kept when the logLikelihood > lowLhood

Attributes from Engine

walkers, errdis, maxtrials, nstep, slow, rng, report, phantoms, verbose

Author Do Kester.

GibbsEngine( walkers, errdis, nstep=2, copy=None, **kwargs )

Constructor.

Parameters

  • walkers : WalkerList
         walkers to be diffused
  • errdis : ErrorDistribution
         error distribution to be used
  • copy : GibbsEngine
         to be copied
  • kwargs : for Engine
         "slow", "seed", "phantoms", "verbose"

copy( )

Return copy of this.

execute( kw, lowLhood, append=False, iteration=0 )
Execute the engine by diffusing the parameters.

Parameters

  • kw : int
         index of walker to diffuse
  • lowLhood : float
         lower limit in logLikelihood
  • append : bool
         set walker in place or append
  • iteration : int
         iteration number

Returns

  • int : the number of successfull moves
Methods inherited from Engine