BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class GalileanEngine( Engine )Source

Move all parameters in forward steps, with optional mirroring on the edge.

Move the parameters in a random direction for N iterations; mirror the direction on the gradient of the logLikelihood when the parameters enter the zone of logLlow.

Attributes

  • size : 0.5
         of the step

Attributes from Engine

walkers, errdis, maxtrials, nstep, slow, rng, report, phantoms, verbose

Author Do Kester.

GalileanEngine( walkers, errdis, copy=None, **kwargs )

Default Constructor.

Parameters

  • walkers : WalkerList
         walkers to be diffused
  • errdis : ErrorDistribution
         error distribution to be used
  • copy : GalileanEngine
         to be copied
  • kwargs : for Engine
         "phantoms", "slow", "seed", "verbose"

copy( )

Return copy of this.

execute( kw, lowLhood, append=False, iteration=0 )
Execute the engine by diffusing the parameters.

Parameters

  • kw : int
         index in walkerlist, of the walker
  • lowLhood : float
         lower limit in logLikelihood
  • append : bool
         set walker in place of append

Returns

  • int : the number of successfull moves

quadinterpol( L0, Lm, L1, lowL )
Quadratic interpolation of points (x,y) x = [0.0, 0.5, 1.0] y = [L0, Lm, L1] where L0 > Lm > L1 interpolation at y = lowL.

Returns

  • xvalue : float
         largest of the two inside [0,1]
Methods inherited from Engine