BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class ExpModel( NonLinearModel )Source

Exponential Model.

  f( x:p ) = p0 * exp( p1 * x )

  where
     p0 = amplitude
     p1 = slope
  As always
     x = input.

The parameters are initialized at [1.0, -1.0]. It is a non-linear model.

Beware of a positive 2nd parameter; when positive the model is going off to Infinity very quickly.

When decay is True the model changes into a decay model

  f( x:p ) = p0 * exp( - p1 * x )

The parameters are initialized at 1.0, 1.0.

Attributes

  • sign : [-1,1]
         Whether decay is True or False.

Attributes from Model

     npchain, parameters, stdevs, xUnit, yUnit

Attributes from FixedModel

     npmax, fixed, parlist, mlist

Attributes from BaseModel

     npbase, ndim, priors, posIndex, nonZero, tiny, deltaP, parNames

Examples

em = ExpModel( )
print( em.getNumberOfParameters( ) )
2

Author Do Kester

ExpModel( decay=False, copy=None, **kwargs )

Exponential model.
Number of parameters is 2.

Parameters

  • decay : boolean
         changes sign of parameter[1]
  • copy : ExpModel
         to be copied
  • fixed : None or dictionary of {int:float|Model}
         int index of parameter to fix permanently.
         float|Model values for the fixed parameters.
         Attribute fixed can only be set in the constructor.
         See: FixedModel

copy( )

Copy method.

baseResult( xdata, params )
Returns the result of the model function.

Parameters

  • xdata : array_like
         value at which to calculate the result
  • params : array_like
         values for the parameters

basePartial( xdata, params, parlist=None )
Returns the partials at the input value.

Parameters

  • xdata : array_like
         value at which to calculate the result
  • params : array_like
         values for the parameters
  • parlist : array_like
         list of indices active parameters (or None for all)

baseDerivative( xdata, params )
Returns the derivative df/dx at the input value.

Parameters

  • xdata : array_like
         value at which to calculate the result
  • params : array_like
         values for the parameters

baseName( )
Returns a string representation of the model.

baseParameterUnit( k )
Return the unit of the indicated parameter. Parameters: k parameter number.
Methods inherited from NonLinearModel
Methods inherited from Model
Methods inherited from FixedModel
Methods inherited from BaseModel