Navigation
class ConjugateGradientFitter( ScipyFitter ) | Source |
---|
Conjugate Gradient Method of Polak and Ribiere.
Syntactic sugar for
ScipyFitter( ..., method='CG', ... )
See ScipyFitter
ConjugateGradientFitter( xdata, model, gradient=True, **kwargs ) |
---|
Constructor. Create a class, providing inputs and model.
Parameters
- xdata : array_like
array of independent input values - model : Model
a model function to be fitted (linear or nonlinear) - gradient : bool or None or callable gradient( par )
if True use gradient calculated from model. It is the default.
if False/None dont use gradient (use numeric approximation in stead)
if callable use the method as gradient - kwargs : dict
Possibly includes keywords from
ScipyFitter: gradient, hessp
MaxLikelihoodFitter : errdis, scale, power
IterativeFitter : maxIter, tolerance, verbose
BaseFitter : map, keep, fixedScale
Methods inherited from ScipyFitter |
---|
Methods inherited from MaxLikelihoodFitter |
---|
- makeFuncs( data, weights=None, index=None, ret=3 )
- getScale( )
- getLogLikelihood( autoscale=False, var=1.0 )
- normalize( normdfdp, normdata, weight=1.0 )
- testGradient( par, at, data, weights=None )
Methods inherited from IterativeFitter |
---|
- setParameters( params )
- doPlot( param, force=False )
- fitprolog( ydata, weights=None, accuracy=None, keep=None )
- report( verbose, param, chi, more=None, force=False )
Methods inherited from BaseFitter |
---|
- setMinimumScale( scale=0 )
- fitpostscript( ydata, plot=False )
- keepFixed( keep=None )
- insertParameters( fitpar, index=None, into=None )
- modelFit( ydata, weights=None, keep=None )
- limitsFit( ydata, weights=None, keep=None )
- checkNan( ydata, weights=None, accuracy=None )
- getVector( ydata, index=None )
- getHessian( params=None, weights=None, index=None )
- getInverseHessian( params=None, weights=None, index=None )
- getCovarianceMatrix( )
- makeVariance( scale=None )
- getDesign( params=None, xdata=None, index=None )
- chiSquared( ydata, params=None, weights=None )
- getStandardDeviations( )
- monteCarloError( xdata=None, monteCarlo=None)
- getEvidence( limits=None, noiseLimits=None )
- getLogZ( limits=None, noiseLimits=None )
- plotResult( xdata=None, ydata=None, model=None, residuals=True,