Navigation
class ClassicProblem( Problem ) | Source |
---|
A ClassicProblem is an optimization of parameters which involves the fitting of data to a Model at a fixed set of x values.
Problems can be solved by NestedSampler, with appropriate Engines and ErrorDistributions.
The result of the function for certain x and p is given by problem.result( x, p ) The parameters, p, are to be optimized while the x provide additional information.
Attributes from Problem
model, xdata, ydata, weights, accuracy, varyy
- Author : Do Kester
ClassicProblem( model=None, xdata=None, ydata=None, weights=None, accuracy=None, copy=None ) |
---|
Constructor for classic problems.
Parameters
- model : Model
the model to be solved - xdata : array_like or None
independent variable - ydata : array_like or None
dependent variable - weights : array_like or None
weights associated with ydata - accuracy : float or array_like
accuracy scale for the datapoints
all the same or one for each data point - copy : Problem
to be copied
copy( ) |
---|
The copy points to the same instance of model.
result( param ) |
---|
Parameters
- param : array_like
values for the parameters.
partial( param ) |
---|
Parameters
- param : array_like
list of model parameters
derivative( param ) |
---|
Parameters
- param : array_like
list of model parameters
myEngines( ) |
---|
myStartEngine( ) |
---|
myDistribution( ) |
---|
baseName( ) |
---|
Returns a string representation of the model.
Methods inherited from Problem |
---|