BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class Brackets( Model )Source

Brackets is only for use in Model. Use BracketModel for independent uses.

Brackets( model, copy=None, **kwargs )

copy( )

baseResult( xdata, param )

Returns the result calculated at the xdatas.

Parameters

  • xdata : array_like
         values at which to calculate the result
  • params : array_like
         values for the parameters.

basePartial( xdata, param, parlist=None )
Returns the partial derivatives calculated at the xdatas.

Parameters

  • xdata : array_like
         values at which to calculate the partials
  • params : array_like
         values for the parameters.
  • parlist : array_like
         Not in use

baseDerivative( xdata, param )
Returns the derivative (df/dx) calculated at the xdatas.

Parameters

  • xdata : array_like
         values at which to calculate the partials
  • params : array_like
         values for the parameters.

setPrior( kpar, prior=None, **kwargs )

getPrior( kpar )

setPrior( self, kpar, prior=None, **kwargs ) return self.model.setPrior( kpar, prior=prior, **kwargs )

getPrior( self, kpar ) return self.model.getPrior( kpar )

nextPrior( )

basePrior( k )

Return the prior of the indicated parameter.

Parameters

  • k : int
         parameter number.

hasPriors( isBound=True )
Return True when the model has priors for all its parameters.

Parameters

  • isBound : bool
         Also check if the prior is bound.

baseParameterName( k )
Return the name of the indicated parameter.

Parameters

  • k : int
         parameter number.

baseParameterUnit( k )
Return the unit of the indicated parameter.

Parameters

  • k : int
         parameter number.
Methods inherited from Model
Methods inherited from FixedModel
Methods inherited from BaseModel