BayesicFitting

Model Fitting and Evidence Calculation

View project on GitHub



class BfgsFitter( ScipyFitter )Source

Quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shannon.

Syntactic sugar for
     ScipyFitter( ..., method='BFGS', ... )

See ScipyFitter

BfgsFitter( xdata, model, gradient=True, **kwargs )

Constructor. Create a class, providing inputs and model.

Parameters

  • xdata : array_like
         array of independent input values
  • model : Model
         a model function to be fitted (linear or nonlinear)
  • gradient : bool or None or callable gradient( par )
         if True use gradient calculated from model. It is the default.
         if False/None dont use gradient (use numeric approximation in stead)
         if callable use the method as gradient
  • kwargs : dict
         Possibly includes keywords from
             ScipyFitter: gradient, hessp
             MaxLikelihoodFitter : errdis, scale, power
             IterativeFitter : maxIter, tolerance, verbose
             BaseFitter : map, keep, fixedScale
Methods inherited from ScipyFitter
Methods inherited from MaxLikelihoodFitter
Methods inherited from IterativeFitter
Methods inherited from BaseFitter